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Abstract

Development of deep learning models to evaluate structural brain changes caused by

cognitive impairment in MRI scans holds significant translational value. The efficacy

of these models often encounters challenges due to variabilities arising from different

data generation protocols, imaging equipment, radiological artifacts, and shifts in

demographic distributions. Domain generalization (DG) techniques show promise in

addressing these challenges by enabling the model to learn from one or more source

domains and apply this knowledge to new, unseen target domains. Here we present

a framework that utilizes model interpretability to enhance the generalizability of

classification models across various cohorts. We used MRI scans and clinical diagno-

ses from four independent cohorts: Alzheimer's Disease Neuroimaging Initiative

(ADNI, n = 1821), the Framingham Heart Study (FHS, n = 304), the Australian Imag-

ing Biomarkers & Lifestyle Study of Ageing (AIBL, n = 661), and the National Alzhei-

mer's Coordinating Center (NACC, n = 4647). With this data, we trained a deep

neural network to focus on areas of the brain identified as relevant to the disease for

model training. Our approach involved training a classifier to differentiate between

structural neurodegeneration in individuals with normal cognition (NC), mild cognitive

impairment (MCI), and dementia due to Alzheimer's disease (AD). This was achieved

by aligning class-wise attention with a unified visual saliency prior, which was com-

puted offline for each class using all the training data. Our method not only competes

with state-of-the-art approaches but also shows improved correlation with postmor-

tem histology. This alignment with the gold standard evidence is a significant step

towards validating the effectiveness of DG frameworks, paving the way for their

broader application in the field.
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1 | INTRODUCTION

Dementia due to Alzheimer's disease (AD) is a progressive syndrome

leading to loss of brain function that affects memory, thinking, lan-

guage, judgment and behavior. The approach to dementia diagnosis

involves careful consideration of the patient's demographics and

symptoms, family, social and medical history, neurologic examination,

cognitive, behavioral, and functional assessments along with neuroim-

aging (Hugo & Ganguli, 2014; McKhann et al., 2011). Magnetic reso-

nance imaging (MRI) is typically recommended to evaluate the

structural changes in the patient's brain that correspond to volume

loss and atrophy patterns suggestive of AD and rule out other pat-

terns indicative of non-AD dementias. Computational methods based

on advanced machine learning techniques are increasingly considered

to automatically process the MRI scans and classify persons with

dementia due to AD from those with normal cognition (NC) and mild

cognitive impairment (MCI) (Aderghal et al., 2017; Liu et al., 2015; Qiu

et al., 2018; Qiu et al., 2020; Qiu et al., 2022). Some of recently

reported frameworks have relied on training models using data col-

lected from a single cohort followed by evaluation on independent

test cohorts (Qiu et al., 2020). Such model development strategies can

establish a proof-of-principle, but may lack generalizability because

data collected from multiple cohorts contain variabilities stemming

from independent scanning protocols, diversity of the study popula-

tion and other sources. Furthermore, while recent advancements in

public data sharing have made data more accessible, there is an

increasing necessity to create models that yield findings which are

both generalizable and consistent.

Recently, domain generalization (DG) approaches are being con-

sidered to train robust deep learning models that account for cohort-

specific variabilities and work well across multiple datasets (Donini

et al., 2018; Ghimire et al., 2020; Huang et al., 2020; Koh et al., 2021;

Krueger et al., 2021; Li, Pan, et al., 2018; Li, Yang, et al., 2018; Zhang

et al., 2020; Zhou et al., 2023). Most methods attempt to mitigate the

distributional variance between domain-specific feature representa-

tions. We submit that additional aspects such as orienting the models

to focus on disease-related information while performing model train-

ing can be a targeted approach to meet the objective of creating gen-

eralizable architectures for disease classification.

1.1 | Related work

DG frameworks are typically designed to learn a robust signal and a

set of patterns possibly from single or multiple source domains with

the aim of transferring them to unseen target domains. The expecta-

tion is that such frameworks lead to minimal performance degradation

on the unseen target environment. In the setting of single-source DG,

the model trained on this source learns robust representations that

can generalize to out-of-distribution data. Single-source DG methods

can also be applied to a multi-source setting, as training is done over

pooled data across the different source domains (Zhou et al., 2023).

Also, multiple source domains can be used for training

domain-invariant feature representations that generalize well to

unseen target data.

Most DG methods were originally designed to benchmark natural

imaging datasets, with a limited number of frameworks focused on

medical imaging data (Ghimire et al., 2020; Koh et al., 2021). A group

of methods have been proposed to tackle DG via data manipulation,

which could either be data augmentation or generation (Cubuk

et al., 2020; Tobin et al., 2017; Volpi et al., 2018; Zhang et al., 2018;

Zhou et al., 2020). One of those methods is Mixup (Zhang

et al., 2018), a data-agnostic routine that constructs virtual training

examples as convex combinations of pairs of examples and their

labels sampled at random from the training distribution. Mixup is

designed to regularize the neural network, encouraging it to adopt lin-

ear behavior between training examples (Zhang et al., 2018). Another

group of methods belong to the use of representation learning to

address domain shift, mainly by learning domain-invariant representa-

tions and feature disentanglement (Donini et al., 2018; Ganin

et al., 2016; Huang et al., 2020; Krueger et al., 2021; Li, Pan,

et al., 2018; Nguyen et al., 2021; Zellinger et al., 2017). Donini and

co-workers proposed a multi-source algorithm that uses empirical risk

minimization (ERM), which became the standard approach to the DG

problem (Donini et al., 2018). ERM aims to minimize the training risk

across all source domains. Recently, Kreuger and colleagues intro-

duced risk extrapolation (REx) for out-of-distribution (OOD) generali-

zation and proposed a penalty on the variance of training risks

(V-REx) (Krueger et al., 2021). They showed that reducing differences

in risks with V-REx can reduce a model's sensitivity to a wide range of

extreme distributional shifts. Li et al., on the other hand, proposed

using the maximum mean discrepancy (MMD) measure with autoen-

coders to align distributions across different domains via adversarial

training (Li, Pan, et al., 2018). Another work introduced representation

self-challenging (RSC) to force the model to discard dominant fea-

tures activated on the training data and activate remaining features

that correlate with ground-truth labels (Huang et al., 2020). Further,

there exists a line of work that used meta-learning for DG. One of the

proposed meta-learning methods was MLDG, meta-learning for

domain generalization, which simulates domain shift during training

by synthesizing virtual testing domains within each mini-batch (Li,

Yang, et al., 2018).

Our approach represents a distinct advancement from prior

research focused on learning domain-invariant feature representa-

tions. It uniquely contributes by employing interpretability techniques

to extract disease-relevant information, which is then used for aligning

features effectively. Related prior work used model explanations as

means of disentangling domain-specific information from otherwise

relevant features (Zunino et al., 2021). Contrastingly, our method uti-

lizes the feature contributions leading to accurate predictions as a

foundation of model-identified disease biology. This knowledge is

then applied to direct the model's focus during training. We concen-

trate on the single-source DG setting, which is more practical in clini-

cal environments where the model is trained on a single source
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domain. The model's ability to generalize is subsequently assessed on

external cohorts, which are considered the target domains.

1.2 | Contributions

Our work falls under the umbrella of medically interpretable machine

learning, where we use feature contributions to adjust final predic-

tions by emphasizing disease-relevant features. Through attention-

based supervision, the model learns to focus on disease-correlated

regions using pre-computed class-wise saliency map priors with voxel

contributions. The main contributions of this paper are summarized as

follows:

• We developed an interpretability-based computational framework

to train deep neural networks that focus on model-identified dis-

ease regions of interest as a means to generalize across multiple

cohorts.

• Using MRI scans and clinical data obtained from multiple cohorts,

we developed a classifier that distinguishes between persons with

NC, MCI and AD.

• We demonstrated that our method competes with state-of-the-art

DG methods in the real-world single-source setting.

• Finally, we showed that our interpretable findings correlate

strongly with postmortem histology, identifying disease presence

in brain regions that are known to classically associate with

disease.

2 | METHODS

2.1 | Study population

We obtained brain MRI scans and corresponding clinical and demo-

graphic data on participants from four different cohorts: the Alzhei-

mer's Disease Neuroimaging Initiative (ADNI) n¼1821ð Þ (Petersen

et al., 2010), National Alzheimer's Coordinating Center (NACC)

n¼4647ð Þ (Beekly et al., 2004), the Australian Imaging Biomarkers &

Lifestyle (AIBL) Study of Ageing n¼661ð Þ (Ellis et al., 2009), and the

Framingham Heart Study (FHS) (Mahmood et al., 2014; Massaro

et al., 2004) n¼304ð Þ. There were 3697 cases with normal cognition

(NC), 2323 cases with mild cognitive impairment (MCI), and 1413

cases with dementia due to Alzheimer's disease (AD) across all cohorts

(Table 1). Statistical analysis of distributional variance, including vari-

ance in image quality and imaging equipment, across the four cohorts

can be found in Figures S1–S3 of the supplement. Additionally, our

study incorporated post-mortem histological evaluations of 23 partici-

pants from the ADNI and FHS cohorts, who deceased within 1 year

after their last MRI scan. These assessments comprised pathology

grades derived from three distinct stains, which quantified the extent

TABLE 1 Study population.

Age, years Education, years Gender MMSE APOE4
Dataset Group [participants] Mean [std] Median [std] Male count (%) Median [std] Positive count (%)

ADNI NC [n = 481] 74.3 ± 6.0 16.3 ± 2.7 235 (48.9%) 29.1 ± 1.1 138 (29.6%)a

MCI [n = 971] 72.8 ± 7.7 15.9 ± 2.8 572 (58.9%) 27.6 ± 1.8 438 (47.2%)a

AD [n = 369] 74.9 ± 7.8 15.2 ± 3.0 203 (55.0%) 23.2 ± 2.1 229 (64.3%)a

p-value <.001 <.001 .001 <.001 <.001

NACC NC [n = 2524] 69.8 ± 9.9 15.92 ± 3.0 871 (34.5%) 29.0 ± 1.3 599 (30.0%)a

MCI [n = 1175] 74.0 ± 8.7 15.4 ± 3.4 555 (47.2%) 26.8 ± 2.5 322 (38.7%)a

AD [n = 948] 75.0 ± 9.1 14.6 ± 3.6 431 (45.5%) 20.5 ± 5.7 346 (52.2%)a

p-value <.001 <.001 <.001 <.001 <.001

AIBL NC [n = 480] 72.5 ± 6.2 N.A. 203 (42.3%) 28.7 ± 1.2 12 (2.5%)

MCI [n = 102] 74.7 ± 7.1 N.A. 53 (52.0%) 27.1 ± 2.1 12 (11.8%)

AD [n = 79] 73.3 ± 7.8 N.A. 33 (41.8%) 20.4 ± 5.5 14 (17.7%)

p-value .006 N.A. .189 <.001 <.001

FHS NC [n = 212] 73.4 ± 9.6 1.8 ± 0.9b 112 (52.8%) 28.1 ± 1.7 42 (20.2%)a

MCI [n = 75] 76.2 ± 6.8 1.6 ± 1.0b 34 (45.3%) 27.2 ± 2.0 17 (23.6%)a

AD [n = 17] 78.8 ± 7.2 1.8 ± 1.0b 4 (23.5%) 24.0 ± 2.1 7 (43.8%)a

p-value .007 .272 .049 <.001 .088

Note: MRI scans and corresponding clinical and demographic data were collected across four different cohorts: the Alzheimer's Disease Neuroimaging

Initiative (ADNI), the National Alzheimer's Coordinating Center (NACC), the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL), and

the Framingham Heart Study (FHS). The models were trained and tested to differentiate persons who have either normal cognition (NC), mild cognitive

impairment (MCI) or dementia due to Alzheimer's disease (AD). Education information on the AIBL dataset was not available.
aData were not available for some subjects.
bFHS education code: 0 = high school did not graduate, 1 = high school graduate, 2 = some college graduate, 3 = college graduate.

LTEIF ET AL. 3 of 13



of disease in cortical and subcortical brain structures. In our approach,

we adopted a single-source setting for DG. Here, the training, internal

validation, and initial testing of our models were conducted using data

from one source cohort. Subsequently, external validation and further

testing were carried out on the target cohorts.

2.2 | Data selection criterion

To ensure uniformity and control for potential confounding factors,

we uniformly applied a set of selection criteria across all cohorts, as

detailed in Table 1. These criteria, derived from ADNI's baseline

recruitment protocol (Petersen et al., 2010), were crucial in shaping

our study's dataset. Our focus was on individuals aged 55 and above,

a demographic choice reflective of AD characteristics, including the

presence of brain atrophy observable in MRI scans. In our selection

process, only subjects with MRI scans conducted within 6 months of

their clinically confirmed diagnosis were included, prioritizing the scan

closest to the diagnosis date when multiple MRIs were available. We

excluded cases involving AD with mixed dementia, non-AD demen-

tias, a history of severe traumatic brain injury, depression, stroke,

brain tumors, or significant systemic illnesses. The MRI scans we ana-

lyzed adhered to a strict acquisition protocol, involving a T1-weighted

sequence, 3D acquisition type (irrespective of the acquisition plane),

and a field strength of either 1.5 or 3 Tesla. Additionally, most

selected cases provided comprehensive demographic information,

including gender, age, education level, and details about the scanner

manufacturers or brands.

2.3 | MRI processing and quality assurance
pipeline

The MRI scans, downloaded in NIFTI format, underwent a series of

preparatory steps to ensure consistency and accuracy before skull-

stripping using the FSL brain extraction tool (BET) (Smith, 2002),

and subsequent alignment to the MNI152 template (Fonov

et al., 2009). Initially, the scans were oriented to match the MNI

template's axis order, utilizing the “fslorient2std” function within

FSL. This step was crucial for standardizing the orientation across all

scans. Following this, the “robustfov” function estimated the robust

field of view, a process that efficiently removed extraneous areas

such as the neck and lower head from the scan. This function pro-

vided bounding box 3D coordinates of the estimated field of view,

crucial for the next processing step. Utilizing these coordinates, the

“fslmaths” function cropped the scan to focus on the region of

interest, which excluded voxels corresponding to white matter,

cerebrospinal fluid, the brain stem, and the cerebellum. This precise

cropping was imperative to isolate cerebral regions for in-depth

analysis, ensuring the scans were optimally prepared for the subse-

quent steps in our study.

Following the initial preparation of the scans, we utilized the FSL

brain extraction tool (BET) (Smith, 2002) for skull stripping. The BET

function operates with two primary parameters: the fractional inten-

sity threshold (f ), which ranges between 0 and 1, and the vertical gra-

dient in fractional intensity threshold (g), with values spanning from

�1 to 1. To assess the quality of the processing, we conducted an

inspection of the outputs. This involved generating and analyzing

images from randomly selected slices across the axial, sagittal, and

coronal planes of each scan. We visually assessed the extracted brain

scans and moved the ones with issues such as residual skull fragments

or unintended removal of gray matter by BET to a separate group. We

then proceeded to reprocess the problematic cases in batches, adjust-

ing the BET parameters to rectify the identified issues. This iterative

approach allowed us to fine-tune the processing settings for improved

outcomes. We discovered that setting the f value at 0.45 and the

g value at 0 consistently produced the most accurate and reliable

results in skull stripping, significantly enhancing the quality of the pro-

cessed scans for our subsequent analyses. Finally, we applied intensity

normalization and bias field correction to remove any intensity arti-

facts and increase data homogeneity, then we assessed the quality of

the processed MRI scans. Results of the image quality assessment

(IQA) can be found in Figure S2 of the supplement. Parcellation was

performed on the processed scans of deceased persons from ADNI

and FHS n¼23ð Þ with post-mortem histology who had their last MRI

scan taken within 1 year of their death. This was done by applying a

nonlinear warp of the Hammersmith Adult brain atlas, segmenting the

brain into cortical and subcortical structures, allowing us to study

region-based correlations between model-derived attention scores

and post-mortem histology.

2.4 | Computational framework

Our framework is designed for the classification of 3D volumetric

brain scans into three distinct cognitive states: Normal Cognition

(NC), Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD).

The building blocks of our framework are a feature extractor, a class-

wise attention module, and a classifier network (Figure 1). The training

pipeline consists of two stages: the first is training a baseline model

for the offline computation of class-wise priors, and the second is

training a new independent model with the supervision of these

priors.

2.4.1 | Feature extractor

We chose the UNet3D (Çiçek et al., 2016) architecture and started

from a pretrained Models Genesis checkpoint on chest CT scans

(Zhou et al., 2019; Zhou et al., 2021). Models Genesis are generic pre-

trained 3D models for 3D medical image analysis. They were trained

in a self-supervised robust manner, and outperformed models

trained from scratch (Zhou et al., 2021). To adapt the network to our

classification task, we discarded the decoder module and kept the

encoder of the UNet3D network as the feature extractor for our

framework. Another feature extractor we tried was the transformer-
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based Swin UNETR (Hatamizadeh et al., 2022) which employs a state-

of-the-art window multi-head self-attention mechanism to learn

embeddings in the latent space. We utilized pretrained weights

yielded by the self-supervised pretraining of the Swin UNETR encoder

on CT scans of the chest, abdomen, and head/neck. The Swin UNETR

encoder was pretrained with multiple proxy tasks tailored for medical

image representation (Hatamizadeh et al., 2022).

2.4.2 | Classifier module

We used a global average pooling (GAP) layer (Lin et al., 2013) fol-

lowed by a softmax function as the classifier for the three-way classi-

fication of NC, MCI, and AD. Our choice of a GAP layer as opposed to

a fully connected layer as the classifier encourages spatial awareness.

The latter approach involves inputting a feature map that is pooled

over the channel dimension and subsequently flattened into a one-

dimensional vector. In contrast, the former approach processes a stack

of 3D feature maps, where the channel dimension K corresponds to

the number of classes. This method pools over the spatial dimensions,

effectively preserving spatial information for each channel.

2.4.3 | Attention supervision

We added an attention module between the feature extractor and the

classifier to learn class-wise attention over the source domain. It takes

as input the feature maps Fk output by the feature extractor, and

passes it through a 3D convolutional layer to get F0k . The attention

maps learned during this process are denoted by Mk �ℝK�D�H�W ,

where K is the number of classes, and D, H, and W are the depth,

height, and width of the attention map, respectively. The final output

of the attention module is then the element-wise multiplication of F0k
and Mk . The class-wise attention maps were later used in the second

stage of training for alignment with visual saliency priors computed

per class over the training data.

F IGURE 1 Schematic of the disease-informed domain generalization framework. MRI scans from various cohorts were processed via an
image processing and quality assurance pipeline (see Section 2.3). Segmentation was applied to scans of deceased individuals from the ADNI and
FHS cohorts n¼23ð Þ taken within 1 year of their death, with post-mortem histology available. Our approach takes 3D MRIs as input from the
source domain and learns their feature representations in the latent space, and uses an attention module to learn class-specific saliency maps.
These maps are then used to predict a class label (NC, MCI, or AD). We used SHAP offline to generate the averaged saliency maps, which we
refer to as disease-informed prior knowledge, of NC, MCI, and AD classes over all samples of the source domain used for model training.
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2.4.4 | Training

In the first phase of training, we computed visual saliency maps over

correct predictions by a baseline model trained with weighted

cross-entropy over the training data. To achieve this task, we used

SHapley Additive exPlanations (SHAP) to compute the feature contri-

butions per class (Lundberg & Lee, 2017). For the purpose of smooth-

ing out sample noise and variance, we used an averaged saliency map

over samples of the same class as a representation of class-wise

saliency. Figure 2 shows visualizations of the pre-computed SHAP

priors specific to the AD class. For the purpose of visualization, Shap-

ley values were scaled to the range of �1,1½ �, which we chose to cor-

rectly represent negative and positive voxel contributions as in the

original range. Once the SHAP priors were generated, we ran our

explainability-based strategy to regularize the model through a com-

bined weighted cross entropy (1) and similarity loss (2). We applied

augmentation techniques to the training data using the Medical Open

Network for AI (MONAI) framework (Cardoso et al., 2022), which

included random contrast adjustment, random bias field, random spa-

tial cropping, upsampling, and intensity scaling. We found that inten-

sity scaling to the range 0,1½ � worked best for data normalization of

structural MRI scans.

LWCE by,yð Þ¼�
XN
i

wyi :yi log byið Þ, ð1Þ

such that N spans the minibatch dimension, and wyi refers to the

weight assigned to all samples belonging to the ground-truth class yi.

Class weights are computed by taking the inverse of the total count

of samples belonging to each class, so that underrepresented classes

have a higher weight.

After having the SHAP maps generated offline per class, we used

a similarity loss defined in (2) to minimize the distance between each

sample's extracted feature maps and the retrieved SHAP prior with

respect to the same class as the ground truth label of that sample.

Lsim ¼
XN
i

XK
k

d Mi,k ,SHAPkð Þ, ð2Þ

with d being the distance metric of choice, which, in our case, is the

L2 norm. We used the L2 norm loss to increase the semantic consis-

tency between the attention maps Mi,k and SHAP priors SHAPk corre-

sponding to class k� 1,K½ �, thereby encouraging the model to focus its

attention on disease-relevant regions that the pre-computed priors

highlighted in the brain.

The final loss is then:

L¼ LWCEþλLsim, ð3Þ

where λ is a hyper-parameter that can be optimized.

2.5 | Neuropathological validation

To validate model predictions with gold standard biological evidence,

we correlated deep feature contributions with region-specific neuro-

pathological scores obtained from autopsy on persons who had their

last MRI within a year of their demise. We quantified regional disease

presence based on the degree of amyloid β deposits, neurofibrillary

tangles (NFT), and neuritic plaques (NP) on histology. These three

pathologies are hallmarks of AD that increase in density and/or spread

through the brain as the disease progresses, and they are associated

with tissue/cellular damage and death (McKhann et al., 1984).

We obtained 23 participants from ADNI n¼13ð Þ and FHS

n¼10ð Þ who had MRI scans taken within 1 year of death with avail-

able regional semi-quantitative histopathology scores. Presence and

density of amyloid β deposits, neurofibrillary tangles, and neuritic pla-

ques were assessed in the entorhinal, hippocampal, frontal, temporal,

parietal, and occipital cortices. The regions were proposed based on

the NIA-AA protocol for standardized neuropathological assessment of

AD. Severity of the assessment was categorized into four score cate-

gories: 0 (None), 1 (Mild), 2 (Moderate), and 3 (Severe) (Hyman

et al., 2012). We used the trained models to run inference on those

cases and saved their corresponding class-wise attention maps for

computation of region-level scores. Since postmortem histology grades

assess for the presence of disease in the respective brain regions, we

used the AD-specific attention map to compute region-level attention

scores as model evidence for the prediction of AD. Using the MNI-152

template, we obtained a brain parcellation for each of the MRIs and

aggregated voxel attention values per region, normalized by regional

volume. Once model scores were computed, we ran the Spearman's

rank correlation coefficient test with pathology grades of amyloid β,

neurofibrillary tangles, and neuritic plaques in the various pre-

identified brain regions. Following (Rothman, 1990; Saville, 1990), the

resulting p-values were not adjusted for multiple comparisons.

F IGURE 2 Orthogonal projections of the pre-computed AD-
specific SHAP priors used in our computational framework. The above
projections correspond to the averaged saliency maps with respect to
correct predictions of AD over all samples of the source domain. We
projected the resulting maps to 2D space onto the coronal, sagittal,
and axial axes, respectively.
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3 | EXPERIMENTAL SETUP

We considered the NACC dataset as the source domain for training,

validation and internal testing, and used ADNI, AIBL, and FHS as the

target domains for external testing. All experiments were run with k-

fold cross validation over the source domain with k¼5, and the aver-

age metrics over the five runs with their standard deviation were

reported. Since the source domain we have access to suffers from

class imbalance, wherein MCI and AD cases are significantly less than

NC cases, we used stratified k-fold cross validation to ensure the tar-

get classes follow the same ratio in each fold as in the full dataset. We

used a split ratio of 3 :1 :1, where 60% of the data were used for

model training, 20% were used for internal validation, and the rest

for internal testing. We trained our models for 60 epochs with 200

steps, that is, weight updates, per epoch. We also compared against

two state-of-the-art methods in the single-source DG setting: RSC

(Huang et al., 2020) and Mixup (Zhang et al., 2018). After hyper-

parameter tuning, we chose a λ¼5�10�5 for our training strategy

and an α¼0:2 for the Mixup method. Due to large size of the input

image, that is, 182�218�182ð Þ per MRI, we could only fit a batch

size of 2 into GPU memory (48GB) and had to resort to gradient accu-

mulation over 8 steps to simulate a final batch size of 16, since the

small batch size rendered weighted random sampling ineffective for

mitigating class imbalance. We also modified the state-of-the-art DG

methods to use weighted cross-entropy across all experiments, as

their implementation was not designed to deal with heavy class

imbalance.

3.1 | Performance metrics

Along with model accuracy, we reported the macro F1-score averaged

over five folds as it better represents a balanced score between preci-

sion and recall through their harmonic mean. The macro F1-score in

multi-class classification is the average of F1-scores over all classes

(4). A higher macro F1 score represents lower false positives, that is,

recall, and false negatives, that is, precision.

MacroF1 ¼
XK
k

2�Precisionk�Recallk
PrecisionkþRecallk

ð4Þ

such that,

Precisionk ¼ MkkP
iMik

ð5Þ

Recallk ¼ MkkP
iMki

: ð6Þ

We also reported Matthew's Correlation Coefficient (MCC), using

Scikit-Learn's (Kramer, 2016) formula for multi-class classification (7).

An advantage of having MCC as a single-value classification metric is

that it is perfectly symmetric, unlike precision and recall that can be

affected by swapping positive and negative classes. In addition, it

quantifies how well the model is doing at predicting each class,

regardless of class imbalance.

MCC¼ c� s�PK
k pk� tkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2�PK
k p

2
k

� �
� s2�PK

k t
2
k

� �r ð7Þ

such that,

tk ¼
XK
i

Mik ð8Þ

pk ¼
XK
i

Mki ð9Þ

c¼
XK
k

Mkk ð10Þ

s¼
XK

i

XK

j
Mij, ð11Þ

where M refers to the confusion matrix, K the total number of classes,

tk the number of times class k truly occurred, pk the number of times

class k was predicted, c the total number of samples correctly pre-

dicted, and s the total number of samples.

3.2 | Computing infrastructure

We used PyTorch (v1.13.1) and a NVIDIA A6000 graphics card with

48 GB memory on a GPU workstation to implement the model. The

training speed was about 2.25 s/iteration, and it took less than 24 h to

reach convergence with a batch size of 16 after gradient accumula-

tion. The inference speed was <0.2 s per MRI.

3.3 | Data and code availability

All the MRI scans and corresponding clinical and demographic data

can be downloaded freely from ADNI, NACC and AIBL websites. FHS

data is available upon request and subject to institutional approval.

Python scripts and manuals are available on GitHub.1

4 | RESULTS

We compared the results of our computational framework against

state-of-the art DG methods for the single-source setting in Table 2.

We used a vanilla UNet3D model trained without DG on the NACC

cohort as the baseline on which we ran three different experiments:

1https://github.com/vkola-lab/hbm2024.
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one trained from scratch and not using attention (Row 1), another also

trained from scratch but with our attention module (Row 2), and the

third trained starting from the pretrained Models Genesis (Zhou

et al., 2019; Zhou et al., 2021) checkpoint with our attention module

(Row 3). First, the two methods we compared against, RSC (Huang

et al., 2020) and Mixup (Zhang et al., 2018), did not show improve-

ment over the baseline. In fact, performance was deteriorated going

from Row 3 to 4 by 10:8% in terms of target mean accuracy, 0.07

7%ð Þ in terms of target mean macro F1-score, and 0.08 4%ð Þ in terms

of target mean MCC. The same pattern of performance degradation

was observed going from Rows 3 to 5, with a 4:6% lower target mean

accuracy, a 0.03 3%ð Þ lower target mean macro F1-score, and 0.04

2%ð Þ lower target mean MCC. These findings suggest that while these

methods have shown enhanced performance and resilience against

distributional changes in natural and synthetic imaging benchmarks,

their effectiveness may not extend to real-world clinical scenarios,

specifically in the context of volumetric structural brain MRIs. On the

other hand, training using our method improved performance, outper-

forming RSC, Mixup, and the baseline across the reported target mean

metrics. We showed a 2.8% improvement over the baseline (Row

TABLE 2 Model performance on the classification of NC, MCI, and AD.

Method

Class-wise

attention Pretrained Source ADNI AIBL FHS

Target

mean

Baseline (Zhou

et al., 2019)

✘ ✘ Accuracy (%) 52.5 ± 5.4 38.9 ± 2.7 54.1 ± 11.5 38.6 ± 10.0 43.9 ± 6.9

Baseline (Zhou

et al., 2019)

✓ ✘ 52.7 ± 2.5 42.9 ± 0.6 52.6 ± 4.8 42.7 ± 4.5 46.1 ± 2.5

Baseline (Zhou

et al., 2019)

✓ ✓ 64.3 ± 4.0 42.7 ± 1.4 66.1 ± 3.7 48.1 ± 7.2 52.3 ± 2.9

RSC (Huang

et al., 2020)

✓ ✓ 55.5 ± 3.4 43.8 ± 3.8 44.8 ± 9.0 35.9 ± 9.2 41.5 ± 3.0

Mixup (Zhang

et al., 2018)

✓ ✓ 62.8 ± 1.5 43.5 ± 2.0 65.2 ± 3.6 34.3 ± 2.8 47.7 ± 2.1

Ours ✓ ✘ 51.6 ± 2.3 44.0 ± 0.4 47.3 ± 3.3 37.1 ± 3.6 42.8 ± 1.6

Ours ✓ ✓ 66.5 ± 1.3 42.9 ± 1.5 73.4 ± 2.4 49.1 ± 6.5 55.1 ± 2.9

Baseline (Zhou

et al., 2019)

✘ ✘ Macro F1

Score

0.50 ± 0.04 0.39 ± 0.03 0.44 ± 0.06 0.33 ± 0.07 0.39 ± 0.05

Baseline (Zhou

et al., 2019)

✓ ✘ 0.50 ± 0.02 0.44 ± 0.01 0.45 ± 0.02 0.37 ± 0.03 0.42 ± 0.01

Baseline (Zhou

et al., 2019)

✓ ✓ 0.58 ± 0.02 0.44 ± 0.02 0.54 ± 0.02 0.40 ± 0.05 0.46 ± 0.02

RSC (Huang

et al., 2020)

✓ ✓ 0.52 ± 0.01 0.44 ± 0.03 0.42 ± 0.02 0.32 ± 0.07 0.39 ± 0.02

Mixup (Zhang

et al., 2018)

✓ ✓ 0.58 ± 0.01 0.44 ± 0.02 0.54 ± 0.03 0.30 ± 0.02 0.43 ± 0.02

Ours ✓ ✘ 0.50 ± 0.02 0.45 ± 0.00 0.42 ± 0.02 0.34 ± 0.03 0.40 ± 0.01

Ours ✓ ✓ 0.60 ± 0.02 0.44 ± 0.02 0.58 ± 0.02 0.41 ± 0.04 0.48 ± 0.02

Baseline (Zhou

et al., 2019)

✘ ✘ MCC 0.27 ± 0.04 0.13 ± 0.03 0.21 ± 0.06 0.11 ± 0.06 0.15 ± 0.05

Baseline (Zhou

et al., 2019)

✓ ✘ 0.26 ± 0.04 0.18 ± 0.02 0.21 ± 0.03 0.13 ± 0.03 0.17 ± 0.02

Baseline (Zhou

et al., 2019)

✓ ✓ 0.40 ± 0.04 0.21 ± 0.03 0.34 ± 0.02 0.19 ± 0.37 0.25 ± 0.02

RSC (Huang

et al., 2020)

✓ ✓ 0.31 ± 0.02 0.18 ± 0.02 0.23 ± 0.01 0.10 ± 0.03 0.17 ± 0.01

Mixup (Zhang

et al., 2018)

✓ ✓ 0.39 ± 0.02 0.19 ± 0.01 0.33 ± 0.03 0.11 ± 0.02 0.21 ± 0.02

Ours ✓ ✘ 0.26 ± 0.04 0.18 ± 0.01 0.18 ± 0.02 0.11 ± 0.03 0.16 ± 0.02

Ours ✓ ✓ 0.42 ± 0.02 0.21 ± 0.03 0.40 ± 0.02 0.20 ± 0.03 0.27 ± 0.03

Note: We trained our model on the NACC cohort and used the ADNI, AIBL, and FHS cohorts as target domains. We reported accuracy on the test split of

NACC, and on the entirety of the target datasets. Performance metrics including accuracy, macro F1-score and MCC are reported on each case. Note that

model training was done via 5-fold cross validation on the NACC dataset, and testing was done on each of the models. Results are reported as mean

± standard deviation. The bold font is used to report the best model performance in each column.
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3 vs. Row 7) in terms of target mean accuracy. In fact, our method

was able to achieve a 73:4% accuracy on the target cohort AIBL, a

7:3% improvement over the baseline (Row 7 vs. Row 3). This improve-

ment is also reflected in the MCC value which increased by 0.07 3%ð Þ
from Rows 3 to 7. Receiver operating characteristic (ROC) and

precision–recall (PR) curves supporting our findings were included in

the supplement in Figures S8 and S9, respectively.

The above quantitative results were reflected in Figure 3, where

we used the t-distributed stochastic neighbor embedding (t-SNE)

algorithm (Van der Maaten & Hinton, 2008) to visualize MRI embed-

dings learnt by the baseline model trained without DG (Row 3 in

Table 2) and the model trained with our computational framework

(Row 7 in Table 2). While the baseline t-SNE plot shows the MRI

embeddings learned by the baseline model clustered by cohort, ours

shows that our approach to aligning model attention with SHAP priors

reduces cohort-specific clustering. In particular, the improvement in

accuracy over the baseline on the AIBL cohort shows in the dispersion

of MRI embeddings belonging to AIBL (orange) across the tSNE plot

on the right (Ours) as opposed to a clear cluster highlighted in the

plot to the left (Baseline). These results indicate that even though the

SHAP priors used in training were derived only from the source

domain, they effectively reduced the distributional variance across

F IGURE 3 Visualization of MRI embeddings in the latent space. We generated MRI embeddings at the attention module level from two
UNet3D models trained on the NACC cohort without domain generalization (Baseline, Row 3 in Table 2) and with our proposed DG framework
(Ours, Row 7 in Table 2), and visualized them in a 2D space using t-SNE. For both models, data from the target cohorts (ADNI n¼1,821ð Þ, AIBL
n¼661ð Þ and FHS n¼304ð Þ) were used. The data points were color-coded by diagnosis label and marked by cohort.

TABLE 3 Performance results of training without domain generalization (DG) using the Swin UNETR (Hatamizadeh et al., 2022) encoder as
the feature extractor and different classifiers listed below.

Classifier
module

Class-wise
attention Pretrained Source ADNI AIBL FHS

Target
mean

Conv3D ✘ ✓ Accuracy (%) 57.1 ± 5.4 35.2 ± 4.8 41.9 ± 9.2 56.6 ± 9.2 44.6 ± 6.4

Conv3D (N = 3) ✘ ✓ 57.2 ± 4.4 44.3 ± 4.4 41.0 ± 2.7 54.9 ± 7.2 46.7 ± 3.2

Conv3D ✓ ✓ 57.7 ± 1.1 40.7 ± 2.4 39.1 ± 2.0 58.2 ± 2.3 46.0 ± 1.4

GAP ✓ ✓ 59.8 ± 2.7 41.8 ± 2.9 44.6 ± 5.1 58.4 ± 2.7 48.3 ± 3.1

Conv3D ✘ ✓ Macro

F1-score

0.48 ± 0.05 0.34 ± 0.05 0.32 ± 0.05 0.38 ± 0.07 0.34 ± 0.05

Conv3D (N = 3) ✘ ✓ 0.55 ± 0.03 0.43 ± 0.03 0.36 ± 0.01 0.45 ± 0.05 0.41 ± 0.03

Conv3D ✓ ✓ 0.54 ± 0.01 0.40 ± 0.02 0.34 ± 0.02 0.46 ± 0.02 0.40 ± 0.02

GAP ✓ ✓ 0.55 ± 0.01 0.42 ± 0.03 0.37 ± 0.04 0.44 ± 0.03 0.41 ± 0.03

Conv3D ✘ ✓ MCC 0.30 ± 0.04 0.15 ± 0.03 0.16 ± 0.04 0.17 ± 0.05 0.16 ± 0.03

Conv3D (N = 3) ✘ ✓ 0.35 ± 0.04 0.16 ± 0.02 0.17 ± 0.01 0.21 ± 0.05 0.18 ± 0.02

Conv3D ✓ ✓ 0.33 ± 0.01 0.13 ± 0.01 0.15 ± 0.01 0.20 ± 0.03 0.16 ± 0.02

GAP ✓ ✓ 0.35 ± 0.02 0.15 ± 0.02 0.18 ± 0.04 0.18 ± 0.05 0.17 ± 0.03

Note: The weights of the feature extractor were loaded from a pretrained checkpoint and fine-tuned while training on the classification of NC, MCI, and

AD. The feature extractor has a window multi-head self-attention mechanism built in, and we ran training with and without the class-wise attention

module before the classifier.
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source and target domains. Moreover, we explored the effect of

demographic variance on model performance and included a detailed

comparison of our model (Row 7 in Table 2) against the baseline

(Zhou et al., 2019) (Row 1 in Table 2) in the supplement

(Figures S4–S7). Our model exhibited an overall improvement in per-

formance over the baseline across different distributions of demo-

graphic groups.

For comparison with state-of-the-art, results of additional experi-

ments were reported in Table 3 on the ternary classification task of

NC, MCI, and AD with the transformer-based Swin UNETR

(Hatamizadeh et al., 2022) encoder as the feature extractor. The

model was trained with different classifiers, with and without

the class-wise attention module described in Section 2.4. Table 3

shows a similar performance to the results with the UNet3D encoder

in Table 2. Adding the class-wise attention module exhibited the same

trend in performance as reported in Table 2 with the UNet3D (Çiçek

et al., 2016) feature extractor. Remarkably, the results in Table 3 show

that using a feature extractor with inherent, state-of-the-art self-

attention did not provide an advantage over using class-wise attention

supervision designed to focus on disease biology.

We further validated our method with gold standard evidence of

disease pathology and compared it against the other methods, report-

ing the results in the form of a correlation heat map in Figure 4. We

showed that not only did our method correlate more strongly with

postmortem histology scores than other methods, but also, our results

were more consistent across the three stains. Correlation of our

method with pathology in the amygdala, hippocampus, parahippocam-

pal and ambient gyri was positive for amyloid β, neurofibrillary tangles,

and neuritic plaques. We then projected the computed correlation

values onto their corresponding brain regions and displayed the pro-

jections (Figure 5). Figure 5a shows an improved correlation for our

method with pathology grades of amyloid β in the hippocampal

region and the middle frontal gyrus of the frontal lobe. Correla-

tion in these brain regions is also consistent with pathology

grades of neurofibrillary tangles and neuritic plaques

(Figure 5b,c). As for the other evaluated methods, shown in the

first three columns of each subfigure, the correlations were lower

with pathology grades in the hippocampus of amyloid β, neurofi-

brillary tangles, and neuritic plaques, except for the baseline method

in Figure 5c that had a positive—although lower than ours—correla-

tion. In addition, our method showed the highest correlation in the

parahippocampal and ambient gyri with pathology grades of

neuritic plaques in Figure 5c. Our method demonstrated high

correlations with specific brain regions, notably the hippocampal and

parahippocampal areas, which were visually represented in the pre-

computed AD-specific SHAP priors (Figure 2). These regions contrib-

uted positively to model predictions of AD, indicating the effective-

ness of our technique in aligning model attention with established

knowledge regarding disease indicators. Such observations indicating

improved model correlation with regions that are well-known to be

implicated with disease grounded our model predictions with biologi-

cal evidence.

5 | DISCUSSION

This work presents a computational framework for DG that adds

disease-driven interpretability to deep learning models for AD predic-

tion on volumetric MRI scans. While most of the existing methods

focus on achieving high model performance on unseen data, they do

not directly account for the underlying disease biology during model

development. We achieved this goal by refining the model's attention

to focus on brain regions that are most associated with disease based

on pre-computed feature contributions. In such fashion, our method

distinguishes itself by incorporating disease-driven interpretability

into the training process. The added interpretability can provide a bet-

ter understanding of the underlying disease mechanisms and aid in

the clinical decision-making process. We compared the performance

of our method with previously published DG frameworks, and showed

that our approach shows competitive performance while incorporat-

ing disease relevance into the model training process. We confirmed

F IGURE 4 Correlation of model-generated attention scores with

post-mortem histology. Pathology grades of amyloid β, neurofibrillary
tangles and neuritic plaques in various brain regions on deceased
ADNI and FHS participants were obtained n¼23ð Þ. We compared
model-identified importance in these brain regions with the degree of
pathology severity, and compared them against predictions obtained
using other well-known domain generalization methods.
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the degree to which our attention-based supervision strategy ulti-

mately reflected disease biology by comparing model attention in pre-

defined brain regions with postmortem neuropathology scores.

Overall, our approach to creating a generalizable framework comple-

ments other published work in the literature.

We observed that our model achieved consistent, favorable per-

formance on the test cohorts relative to other DG frameworks. While

extensive testing is required to confirm any modeling framework's

superiority in accurate prediction of disease, it is worth noting that

model performance based on accuracy alone without downstream

evidence of correlation with a reference standard may not be appeal-

ing in the context of medical machine learning. As such, classifying

persons with NC from those who have MCI or AD solely on MRIs is a

clinically challenging task, and often not part of routine clinical neu-

rology work-up. Neurologists use a spectrum of patient data along

with MRIs to assess a person's cognitive status. Nevertheless, our

proposed framework has utility in the objective interpretation of

brain MRIs, and broadly in the quantification of findings indicative of

disease. Besides minimizing subjectivity, it also potentially fills gaps

in healthcare settings where there is a lack of neuroradiology

expertise.

Our study has a few limitations. Due to memory limitations, we

resorted to offline computation of the saliency maps based on correct

predictions by the trained baseline model. We also acknowledge that

SHAP prior computation is solely dependent on the baseline model

used, that is, the quality of prior knowledge and correctness of feature

contributions extracted from the model are directly correlated with

model performance. Also, it is possible that the offline computation

and aggregation of class-specific SHAP maps may have reduced

instance-to-instance variability and minimized radiologic artifacts,

thereby facilitating model attention on disease pathology. In addition,

it is possible that the model was able to capture the fine-grained

nature of disease markers due to our choice of the voxel-wise L2 dis-

tance metric. We utilized this loss function to increase the semantic

similarity between model attention and prior maps at the voxel level.

In conclusion, our work contributes to the growing field of inter-

pretable deep learning in medical imaging, paving the way for more

accurate and personalized diagnoses of cognitive disorders. By

highlighting the specific brain regions that contribute most signifi-

cantly to disease, our approach can provide valuable insight into dis-

ease mechanisms and aid in developing targeted interventions.

Furthermore, the disease-driven interpretability of our framework can

help build trust and understanding between clinicians and patients,

which is crucial for effective healthcare delivery.
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